one abbreviations like 'CST'.
tz
database
The tz
database is not authoritative, and it
surely has errors.
Corrections are welcome and encouraged; see the file CONTRIBUTING
.
Users requiring authoritative data should consult national standards
bodies and the references cited in the database's comments.
Errors in the tz
database arise from many sources:
tz
database predicts future
timestamps, and current predictions
will be incorrect after future governments change the rules.
For example, if today someone schedules a meeting for 13:00 next
October 1, Casablanca time, and tomorrow Morocco changes its
daylight saving rules, software can mess up after the rule change
if it blithely relies on conversions made before the change.
tz
regions would be needed if
the tz
database's scope were extended to
cover even just the known or guessed history of standard time; for
example, the current single entry for France would need to split
into dozens of entries, perhaps hundreds.
And in most of the world even this approach would be misleading
due to widespread disagreement or indifference about what times
should be observed.
In her 2015 book
The
Global Transformation of Time, 1870–1950,
Vanessa Ogle writes
"Outside of Europe and North America there was no system of time
zones at all, often not even a stable landscape of mean times,
prior to the middle decades of the twentieth century".
See: Timothy Shenk, Booked:
A Global History of Time. Dissent 2015-12-17.
tz
database relies on
years of first-class work done by
Joseph Myers and others; see
"History of
legal time in Britain".
Other countries are not done nearly as well.
tz
database stands for the containing region, its pre-1970 data
entries are often accurate for only a small subset of that region.
For example, Europe/London
stands for the United
Kingdom, but its pre-1847 times are valid only for locations that
have London's exact meridian, and its 1847 transition
to GMT is known to be valid only for the L&NW and
the Caledonian railways.
tz
database does not record the
earliest time for which a tz
region's
data entries are thereafter valid for every location in the region.
For example, Europe/London
is valid for all locations
in its region after GMT was made the standard time,
but the date of standardization (1880-08-02) is not in the
tz
database, other than in commentary.
For many tz
regions the earliest time of
validity is unknown.
tz
database does not record a
region's boundaries, and in many cases the boundaries are not known.
For example, the tz
region
America/Kentucky/Louisville
represents a region
around the city of Louisville, the boundaries of which are
unclear.
tz
database were often spread out over hours, days, or even decades.
tz
database requires.
tz
code can handle.
For example, from 1909 to 1937 Netherlands clocks were legally Amsterdam Mean
Time (estimated to be UT
+00:19:32.13), but the tz
code cannot represent the fractional second.
In practice these old specifications were rarely if ever
implemented to subsecond precision.
tz
database are correct, the
tz
rules that generate them may not
faithfully reflect the historical rules.
For example, from 1922 until World War II the UK moved clocks
forward the day following the third Saturday in April unless that
was Easter, in which case it moved clocks forward the previous
Sunday.
Because the tz
database has no
way to specify Easter, these exceptional years are entered as
separate tz Rule
lines, even though the
legal rules did not change.
tz
database models pre-standard time
using the proleptic
Gregorian calendar and local mean time, but many people used
other calendars and other timescales.
For example, the Roman Empire used
the Julian
calendar,
and Roman
timekeeping had twelve varying-length daytime hours with a
non-hour-based system at night.
tz
database assumes Universal Time
(UT) as an origin, even though UT is not
standardized for older timestamps.
In the tz
database commentary,
UT denotes a family of time standards that includes
Coordinated Universal Time (UTC) along with other
variants such as UT1 and GMT,
with days starting at midnight.
Although UT equals UTC for modern
timestamps, UTC was not defined until 1960, so
commentary uses the more-general abbreviation UT for
timestamps that might predate 1960.
Since UT, UT1, etc. disagree slightly,
and since pre-1972 UTC seconds varied in length,
interpretation of older timestamps can be problematic when
subsecond accuracy is needed.
tz
database does not represent how
uncertain its information is.
Ideally it would contain information about when data entries are
incomplete or dicey.
Partial temporal knowledge is a field of active research, though,
and it is not clear how to apply it here.
In short, many, perhaps most, of the tz
database's pre-1970 and future timestamps are either wrong or
misleading.
Any attempt to pass the
tz
database off as the definition of time
should be unacceptable to anybody who cares about the facts.
In particular, the tz
database's
LMT offsets should not be considered meaningful, and
should not prompt creation of tz
regions
merely because two locations
differ in LMT or transitioned to standard time at
different dates.
The tz
code contains time and date functions
that are upwards compatible with those of POSIX.
Code compatible with this package is already
part of many platforms, where the
primary use of this package is to update obsolete time-related files.
To do this, you may need to compile the time zone compiler
'zic
' supplied with this package instead of using the
system 'zic
', since the format of zic
's
input is occasionally extended, and a platform may still be shipping
an older zic
.
In POSIX, time display in a process is controlled by the
environment variable TZ
.
Unfortunately, the POSIX
TZ
string takes a form that is hard to describe and
is error-prone in practice.
Also, POSIX TZ
strings cannot deal with daylight
saving time rules not based on the Gregorian calendar (as in
Iran), or with situations where more than two time zone
abbreviations or UT offsets are used in an area.
The POSIX TZ
string takes the following form:
stdoffset[dst[offset][,
date[/
time],
date[/
time]]]
where:
<+09>
';
this allows "+
" and "-
" in the names.
[±]hh:[mm[:ss]]
'
and specifies the offset west of UT.
'hh' may be a single digit;
0≤hh≤24.
The default DST offset is one hour ahead of
standard time.
/
time],
date[/
time]:
[mm[:
ss]]'
and defaults to 02:00.
This is the same format as the offset, except that a
leading '+
' or '-
' is not allowed.
M
m.
n.
d
(0[Sunday]≤d≤6[Saturday], 1≤n≤5,
1≤m≤12)5
' stands for the last week in which
day d appears (which may be either the 4th or
5th week).
Typically, this is the only useful form; the n
and J
n forms are rarely used.
Here is an example POSIX TZ
string for New
Zealand after 2007.
It says that standard time (NZST) is 12 hours ahead
of UT, and that daylight saving time
(NZDT) is observed from September's last Sunday at
02:00 until April's first Sunday at 03:00:
TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'
This POSIX TZ
string is hard to remember, and
mishandles some timestamps before 2008.
With this package you can use this instead:
TZ='Pacific/Auckland'
TZ
values like
"EST5EDT
".
Typically the current US DST rules
are used to interpret such values, but this means that the
US DST rules are compiled into each
program that does time conversion.
This means that when
US time conversion rules change (as in the United
States in 1987), all programs that do time conversion must be
recompiled to ensure proper results.
TZ
environment variable is process-global, which
makes it hard to write efficient, thread-safe applications that
need access to multiple time zone rulesets.
TZ
environment variable.
While an administrator can "do everything in UT" to
get around the problem, doing so is inconvenient and precludes
handling daylight saving time shifts - as might be required to
limit phone calls to off-peak hours.)
tz
regions
that do not fit into the POSIX model.
tz
code attempts to support all the
time_t
implementations allowed by POSIX.
The time_t
type represents a nonnegative count of seconds
since 1970-01-01 00:00:00 UTC, ignoring leap seconds.
In practice, time_t
is usually a signed 64- or 32-bit
integer; 32-bit signed time_t
values stop working after
2038-01-19 03:14:07 UTC, so new implementations these
days typically use a signed 64-bit integer.
Unsigned 32-bit integers are used on one or two platforms, and 36-bit
and 40-bit integers are also used occasionally.
Although earlier POSIX versions allowed time_t
to be a
floating-point type, this was not supported by any practical systems,
and POSIX.1-2013 and the tz
code both
require time_t
to be an integer type.
tz
code
The TZ
environment variable is used in generating
the name of a binary file from which time-related information is read
(or is interpreted à la POSIX); TZ
is no longer
constrained to be a three-letter time zone
abbreviation followed by a number of hours and an optional three-letter
daylight time zone abbreviation.
The daylight saving time rules to be used for a
particular tz
region are encoded in the
binary file; the format of the file
allows U.S., Australian, and other rules to be encoded, and
allows for situations where more than two time zone
abbreviations are used.
It was recognized that allowing the TZ
environment
variable to take on values such as 'America/New_York
'
might cause "old" programs (that expect TZ
to have a
certain form) to operate incorrectly; consideration was given to using
some other environment variable (for example, TIMEZONE
)
to hold the string used to generate the binary file's name.
In the end, however, it was decided to continue using
TZ
: it is widely used for time zone purposes;
separately maintaining both TZ
and TIMEZONE
seemed a nuisance; and systems where
"new" forms of TZ
might cause problems can simply
use TZ
values such as "EST5EDT
" which
can be used both by "new" programs (à la POSIX) and "old"
programs (as zone names and offsets).
struct tm
, e.g., tm_gmtoff
.
struct tm
, e.g., tm_zone
.
tzalloc
, tzfree
,
localtime_rz
, and mktime_z
for
more-efficient thread-safe applications that need to use multiple
time zone rulesets.
The tzalloc
and tzfree
functions
allocate and free objects of type timezone_t
,
and localtime_rz
and mktime_z
are
like localtime_r
and mktime
with an
extra timezone_t
argument.
The functions were inspired by NetBSD.
tzsetwall
has been added to arrange for the
system's best approximation to local wall clock time to be delivered
by subsequent calls to localtime
.
Source code for portable applications that "must" run on local wall
clock time should call tzsetwall
;
if such code is moved to "old" systems that do not
provide tzsetwall
, you will not be able to generate an
executable program.
(These functions also arrange for local wall clock time to
be used if tzset
is called – directly or
indirectly – and there is no TZ
environment
variable; portable applications should not, however, rely on this
behavior since it is not the way SVR2
systems behave.)
time_t
values are supported, on systems
where time_t
is signed.
POSIX and ISO C
define some APIs that are vestigial:
they are not needed, and are relics of a too-simple model that does
not suffice to handle many real-world timestamps.
Although the tz
code supports these
vestigial APIs for backwards compatibility, they should
be avoided in portable applications.
The vestigial APIs are:
tzname
variable does not suffice and is no
longer needed.
To get a timestamp's time zone abbreviation, consult
the tm_zone
member if available; otherwise,
use strftime
's "%Z"
conversion
specification.
daylight
and timezone
variables do not suffice and are no longer needed.
To get a timestamp's UT offset, consult
the tm_gmtoff
member if available; otherwise,
subtract values returned by localtime
and gmtime
using the rules of the Gregorian calendar,
or use strftime
's "%z"
conversion
specification if a string like "+0900"
suffices.
tm_isdst
member is almost never needed and most of
its uses should be discouraged in favor of the abovementioned
APIs.
Although it can still be used in arguments to
mktime
to disambiguate timestamps near
a DST transition when the clock jumps back, this
disambiguation does not work when standard time itself jumps back,
which can occur when a location changes to a time zone with a
lesser UT offset.
timezone
function is not present in this
package; it is impossible to reliably map timezone
's
arguments (a "minutes west of GMT" value and a
"daylight saving time in effect" flag) to a time zone
abbreviation, and we refuse to guess.
Programs that in the past used the timezone
function
may now examine localtime(&clock)->tm_zone
(if TM_ZONE
is defined) or
tzname[localtime(&clock)->tm_isdst]
(if HAVE_TZNAME
is defined) to learn the correct time
zone abbreviation to use.
gettimeofday
function is not
used in this package.
This formerly let users obtain the current UTC offset
and DST flag, but this functionality was removed in
later versions of BSD.
time_t
values when doing conversions
for places that do not use UT.
This package takes care to do these conversions correctly.
A comment in the source code tells how to get compatibly wro